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Abstract: The main objective of this research was to understand the effects of climate change on soil 

water content (SWC) across the Qu’Appelle River basin in southern Saskatchewan, Canada. The Soil 

and Water Assessment Tool (SWAT) and output from 11 high-resolution (0.22°) regional climate 

models (RCM) were used over three 30-year periods: the near future (2021–2050) and distant future 

(2051–2080) and the historical reference (1975–2005). The RCM data are from the CORDEX North 

American domain, which employs the RCP8.5 high-emission scenario. SWC was modeled at the 

hydrological response units (HRU) level and at daily and monthly (warm season only) intervals for 

2015–2020. The model was calibrated and validated using SUFI-2 in SWAT-CUP based on observa-

tions for streamflow and SWC, including measured data and Soil Moisture Active Passive (SMAP) 

Level 4 for surface (up to 5 cm deep) soil moisture. Values of the Nash–Sutcliffe model efficiency 

(NS) ranged from 0.616 and 0.784 and the coefficient of determination (��) was 0.8 for calibration 

and 0.82 for validation. Likewise, the correlation coefficients between ground measurements and 

SWAT were 0.698 and 0.633, respectively. Future climate forcing of the calibrated SWAT model 

revealed that warmer and drier growing seasons will prevail in the region. Similarly, the ensemble 

of all RCMs indicated that the mean temperature will increase by 2.1 °C and 3.4 °C for the middle 

and late periods, respectively, along with a precipitation increase of 10% and 11.2%. SWC is ex-

pected to decrease with an increase in potential evapotranspiration, despite an increase in precipi-

tation. Likewise, the annual SWC is expected to decrease by 3.6% and 4% in the middle and late 

periods, respectively. The monthly SWC changes showed the highest decreases (5.4%) in April in 

the late period. The spatial pattern of SWC for 11 RCMs was similar such that the northwest and 

west of the river basin are wetter than the south and east. SWC projections suggest that southern 

Saskatchewan could experience significant SWC deficiencies in the summer by the end of this cen-

tury. 
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1. Introduction 

The Province of Saskatchewan has approximately 44% of Canada’s agricultural land. 

Any changes in temperature or precipitation could lead to serious risks for the regional 

agricultural economy that is based on the centrally located Qu’Appelle River basin. This 

region lies in the rain shadow of the Rocky Mountains and thus has low annual precipi-

tation ranging from 300–400 mm with frequent water deficit events [1]. While most pre-

cipitation occurs between April and June, much of the spring SWC is derived from melt-

ing of the winter snow cover. Furthermore, evaporation rates are high during the entire 

growing season (May to August). The sensitivity of the Penman evaporation method is 

critical to understanding the relationship between climate change and drought indices [2]. 

The region is prone to frequent and severe droughts [3] and climate change could exacer-

bate this situation. A report by the Saskatchewan Ministry of Agriculture recommends a 
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400% increase in irrigated area to address serious issues with respect to food security and 

economic development [4]. The ongoing initiative to irrigate a larger farmland area re-

quires a long-term evaluation of SWC across the region. 

Soil water content (SWC) is a key state variable for regional hydrology. An evaluation 

of SWC trends under the effects of climate change over time is critical in managing water 

requirements for crops [4]. The impact of climate on SWC is mainly related to changes in 

precipitation and temperature. Variation in precipitation affects snow accumulation, sur-

face runoff, and water storage [5]. Likewise, air temperature affects energy budgets and 

moisture fluxes, which, in turn, influences the hydrological cycle [6]. For southern Sas-

katchewan, several studies have been conducted using various Global Climate Models 

(GCMs) under different emission scenarios. Sauchyn et al. [7] gave projections in mean 

annual temperature between 0 °C and 3 °C in the 2020s, 1 °C to 5 °C in the 2050s, and 2 °C 

to 7 °C in the 2080s from experiments undertaken at 14 climate modeling centers using 

three emissions states (B1, A1B, and A2). The range of precipitation between GCMs will 

rise 10% to 35% by the 2080s. Morales et al. [8] used five Global Climate Models (GCMs) 

for three Representative Concentration Pathways (RCPs). Their results indicated that total 

annual precipitation will increase by about 13% to 17% and temperature will increase be-

tween 2.5 °C to 6.7 °C towards the end of the 21st century. Dibike et al. [9] used four GCMs 

for two RCPs in southern Saskatchewan. The ensemble mean annual temperature and 

precipitation showed increases from 2 °C to 6 °C and 5% to 15%, respectively, by the end 

of the 21st century. In summary, the expected effects of climate change in the region in-

clude increase in temperatures, variations in rainfall and snow patterns, depletion in an-

nual stream flow, increase in intensity and severity of extreme weather events (drought, 

rainfall, and hailstorms), excessive evapotranspiration, and increase in aridity. The inten-

sification of these driving forces (precipitation and temperature) will result in variable 

impact on the hydrological cycle [10]. Some research has examined the impact of global 

warming on soil moisture at a coarse scale [11–16]. Simulating the response of SWC to 

regional climate change remains a gap in scientific knowledge that has social and eco-

nomic implications.  

The Soil and Water Assessment Tool (SWAT) is widely used among quantitative hy-

drological models at the catchment scale to estimate SWC. It has been extensively tested 

for various watershed scales and environmental conditions worldwide to simulate SWC 

and generate long-term SWC series [17–24]. However, these studies have not investigated 

the effects of climate change on SWC in western Canada, and particularly, using high-

resolution remote sensing data and ground truthing data. The present study investigates 

SWC under historical and future climate conditions using SWAT modeling. Eleven Re-

gional Climate Models (RCMs) were used to predict SWC for three 30-year periods: his-

torical period (1975–2005), near future (2021–2050), and distant future (2051–2080).  

2. Research Methodology 

The SWC was evaluated for four contiguous watersheds in southern Saskatchewan: 

upper and lower Qu’Appelle River, Wascana Creek, and Moose Jaw River sub-basins lo-

cated in the northern glaciated prairie region of North America and covering about 

125,000 km� (Figure 1). The region is characterized by cold and dry winters, more humid 

summers, and snowmelt in spring, which results in high streamflow in March and April. 

The annual average temperature ranges from 8 °C to −3.5 °C. Agriculture is the primary 

land use with 68% cropland and 16% grassland [24]. Detailed information regarding SWC 

prediction in the SWAT model, including functions and variables, was given earlier in 

Zare et al. [24]. The model requires daily observational data (rainfall, maximum and min-

imum air temperature, solar radiation, wind speed, and relative humidity) and hence, 

weather data from 1985 to 2020 for 15 stations were selected from Environment and Cli-

mate Change Canada (Table 1). 
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Figure 1. Map of the study region (modified after [24]). 

Table 1. Summary of climate station. 

Station Name Latitude (N) Longitude (W) Elevation (m) Start Date End Date Years 

Broadview 50°22′05.000″ 102°34′15.000″ 599.80 1985 2020 36 

Buffalo pound lake 50°33′00.000″ 105°23′00.000″ 588.00 1985 2020 36 

Qu’Appelle 50°34′00.000″ 103°59′00.000″ 662.90 1985 2020 36 

Kelliher 51°15′26.700″ 103°45′10.900″ 675.60 1985 2020 36 

Moose Jaw 50°19′54.050″ 105°32′15.030″ 577.00 1998 2020 23 

Lipton 2 51°09′08.008″ 103°53′22.001″ 640.00 1985 2020 36 

Yellow grass 49°49′00.000″ 104°11′00.000″ 579.70 1985 2018 34 

Langenburg 50°54′00.000″ 101°43′00.000″ 516.60 1985 2020 36 

Leroy 52°00′00.000″ 104°38′00.000″ 535.40 1985 2020 36 

Rock point 51°09′14.007″ 107°15′48.004″ 725.10 1985 2020 36 

Elbow 51°08′00.000″ 106°35′00.000″ 595.00 1985 2020 36 

Last mountain 51°25′00.000″ 105°15′00.000″ 497.00 1985 2020 36 

Watrous 51°40′00.000″ 105°24′00.000″ 525.60 1985 2020 36 

Indian head 50°33′00.000″ 103°39′00.000″ 579.10 1985 2020 36 

Lucky lake 50°57′00.000″ 107°09′00.000″ 664.70 1985 2020 36 

In the SWAT model, catchment hydrology is integrated by delineating sub-basins 

based on inputs of land use, soil type, and slope, which are then discretized into hydro-

logic response units (HRUs). The hydrologic component in SWAT is based on the water 

balance Equation (1): 

��� = ��� + �(���� − ����� − �� − ����� − ���)�

�

���

 (1)
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where ��� is the final soil water content (mm), ��� is the initial soil water content in 

day i (mm), t is the time (days), ���� is the amount of precipitation in day i (mm), �� is 

the amount of evapotranspiration in day i (mm water), ����� is the amount of water en-

tering the vadose zone from the soil profile in day i (mm), and ���  is the amount of re-

turn flow in day i (mm). 

The SWC component in the SWAT model consists of soil structure elements that de-

termine the permanent wilting point volumetric water content as a function of the clay 

content and bulk density. Wilting point was estimated in the SWAT model for each soil 

layer as Equation (2): 

���� = 0.4
�� × ��

100
 (2)

where ���� is the water content at wilting point, �� is the percent clay content of the 

layer (%), and �� is the bulk density for the soil layer (�����). Field capacity water con-

tent is estimated as Equation (3): 

���� = ���� + �����   (3)

where ���� the water is content at field capacity expressed as a fraction of the total soil 

volume, ���� is the water content at the wilting point, and ����� is the available water 

capacity of the soil layer. Water in excess of the field capacity water content is available 

for percolation and lateral flow except when the soil layer is frozen. In this study, we con-

sidered SWC in the warm season of April to September.  

We used SWAT-CUP and the Sequential Uncertainty Fitting (SUFI-2) program for 

the sensitivity analysis, calibration, and uncertainty analysis of the model runs [25]. De-

tailed information regarding SWAT-CUP, including functions and variables, was given 

earlier in Zare et al. [24]. This physical model is usually calibrated based on streamflow 

[26,27] and after attaining acceptable model calibration and validation, SWC at the HRU 

level was obtained from the SWAT model in depth units (mm H2O) with daily time steps. 

The depth data were converted into a percentage of soil moisture and the total moisture 

in the soil layer. Water content held at the WP was extracted based on soil texture and 

bulk density, and SWAT output was converted according to plant available water content 

to total moisture present (SWC + WP) in each soil layer [10]. To calibrate SWC in the SWAT 

model, we used the Soil Moisture Active Passive (SMAP) Level 4 (L4-SM) active–passive 

soil moisture product along with field measured data. However, the limitation of SWC 

calibration is that soil moisture values in the SWAT model are spatially averaged over 

particular HRUs while field measurement sensors estimate soil moisture at a point and 

five different depths (0–5, 5–20, 20–50, 50–100, and 100–150 cm). On the other hand, SMAP 

Level 4 data are soil moisture (L4-SM) on a 9-km grid and two depths: the surface (5 cm 

depth) and average root zone (100 cm depth) for comparison of field data with L4-SM, 

following Zare et al. [23]. We compared field measurement sensors at five depths with 

soil moisture simulated in the SWAT model. Only one station measures soil moisture in 

southern Saskatchewan (near Kenaston). Therefore, we examined the HRU surrounding 

the field sensor (HRU No. 314) and associated L4-SM pixel. The comparison of integrated 

field measurements with SWAT and SMAP soil moisture outputs depends on three error 

metrics: RMSE, Bias, and R (correlation coefficient), which are defined as follows: 

���� = √�((�����,����(�) − �����(�))�) (4)

where �  represents the linear mean operator, �  is the time of measurements, 

�����,����(�) is the SMAP and SWAT products at time �, and �����(�) is the observed 

mean of field measurement at time �. The ���� represents the absolute error between 

SWAT data and satellite data with ground observations: 

���� = �(������,����(�)� − �(�����(�)) (5)
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The ���� is the average difference between SMAP and SWAT soil moisture retriev-

als with in situ measurement:  

� =
�((�����,����(�) − � ������,����(�)� . (�����(�) − �������(�)�)

�����,����. �����

 (6)

where �����,����  and �����  are the standard deviations of SMAP, SWAT, and field 

measurement soil moisture, respectively. � is used to characterize the level of correlation 

between two variables, which means SMAP and SWAT soil moisture and measured data. 

Likewise, significance levels of correlation coefficients were determined using the p-value.  

We used daily future climate data from the North American domain of the Coordi-

nated Regional Climate Downscaling Experiment (NA-CORDEX) project archive. The 

NA-CORDEX is based on the use of various RCMs to dynamically downscale state-of-the-

art GCMs from the CMIP5 (Coupled Model Inter-comparison Project Phase 5) (Table 2). 

The spatial resolution of the 11 RCMs in the NAM-22 (North American domain) is 0.22° 

or approximately 25 km. The emission scenario used by NA-CORDEX is Representative 

Concentration Pathway (RCP) 8.5. We downloaded and processed precipitation, maxi-

mum and minimum temperature, specific humidity (converted to relative humidity), so-

lar radiation, and wind speed data. As raw data are uncorrected model output, MBCn-

Daymet are bias-corrected data derived using the MBCn algorithm against Daymet grid-

ded observational datasets for daily data [28].  

Table 2. Summary of NA-CORDEX simulations. 

Simulation Name 
GCM 

Derived 
RCM Model Name Institute 

CanESM2.CanRCM4 CanESM2 Canadian Regional Climate Model version 4 
Canadian Centre for Climate Modelling and Analysis 

(CCCma) 

CanESM2.CRCM5 CanESM2 
Canadian Regional Climate Model (CRCM) 

version 5 
Université du Québec à Montréal (UQAM) 

GEMatm-Can.CRCM5 GEMatm 
Canadian Regional Climate 

Model (CRCM) version 5 
Université du Québec à Montréal (UQAM) 

GEMatm-MPI.CRCM5 GEMatm 
Canadian Regional Climate 

Model (CRCM) version 5 
Université du Québec à Montréal (UQAM) 

GFDL-ESM2M.RegCM4 GFDL-ESM2 
Regional Climate Model 

version 4 

Iowa State University and the National Center for 

Atmospheric Research (NCAR) 

GFDL-ESM2M.WRF GFDL-ESM2 Weather Research and Forecasting model University of Arizona and NCAR 

HadGEM2-ES.WRF 
HadGEM2-

ES 
Weather Research and Forecasting model University of Arizona and NCAR 

MPI-ESM-LR.CRCM5 MPI-ESM-LR 
Canadian Regional Climate Model (CRCM) 

version 5 
Université du Québec à Montréal (UQAM) 

MPI-ESM-LR.RegCM4 MPI-ESM-LR Regional Climate Model version 4 
Iowa State University and the National Center for 

Atmospheric Research (NCAR) 

MPI-ESM-LR.WRF MPI-ESM-LR Weather Research and Forecasting model University of Arizona and NCAR 

MPI-ESM-MR.CRCM5 
MPI-ESM-

MR 

Canadian Regional Climate Model (CRCM) 

version 5 
Université du Québec à Montréal (UQAM) 

3. Results and Discussion 

3.1. Uncertainty, Sensitivity, and Calibration 

Table 3 gives the results of uncertainty and sensitivity analyses and calibration pro-

cesses with the SUFI-2 method. The batch of iterations shows that 15 out of 30 parameters 

inputs have the most sensitivity (high t-values) and the most significance (p-values ap-

proaching zero) with respect to the effect on SWC. The data indicate that the base flow 

alpha factor (ALPHA_BF), groundwater re-evaporation coefficient (GW_REVAP), and ef-

fective hydraulic conductivity in main channel alluvium (CH_K2) have the highest sensi-

tivity. 

Figure 2 gives calibration and validation results for streamflow from SUFI-2 compar-

ing observed and simulated streamflow from 1995 to 2004 and 2005 to 2010, respectively. 
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NSE (Nash–Sutcliffe Efficiency) values were to be 0.616 and 0.784 for the calibration and 

validation periods. Values of NSE greater than 0.5 indicate satisfactory model perfor-

mance at the daily time step. Similarly, higher values of R2 (0.8 and 0.82 for calibration 

and validation, respectively) confirm a good correlation between observed and simulated 

streamflow. PBIAS values ranged from 3% to 2% for the calibration and validation peri-

ods. These were lower than the 20% considered accurate [29–38]. Calibration and valida-

tion results are on a monthly timescale. Results in the calibration period (1995–2004) were 

similar to those in the validation period (2005–2010). Moreover, the correlation coefficient 

between field measurement with SMAP and SWAT products were 0.698 and 0.633, re-

spectively (Table 4), which indicates that the SMAP product is highly correlated with field 

measurement at surface level (5 cm deep). Finally, RMSE values of SMAP and SWAT were 

0.052 and 0.046, respectively.  

Table 3. Parameters used for calibration with optimum values. 

Parameter Description Type Initial Range Optimal Value p-Value t-State Rank 

ALPHA_BF Base flow alpha factor v 0.0–1.0 0.1–0.241 0.000 −36.26 1 

GW_REVAP Ground water re-evaporation coefficient v −0.2–0.2 0.1–0.17 0.000 16.89 2 

CH_K2 
Effective hydraulic conductivity in main 

channel alluvium (mm/h) 
v 0.0–500 154–642 0.001 14.73 3 

CN2 Curve number at moisture condition II r −0.2–0.2 −0.13–0.038 0.008 13.21 4 

GWQMN 
Threshold depth of water in the shallow 

aquifer required for return flow (mm) 
r 0.0–0.2 0.64–1.94 0.074 10.9 5 

SOL_ALB Moist soil albedo r 0–0.25 0.08–0.139 0.08 −10.7 6 

ESCO Soil evaporation compensation factor v 0.0–1.0 0.241–0.832 0.354 9.26 7 

CH_N2 Manning’s ”n” value for the channel v 0.0–0.3 0.09–0.272 0.382 −8.74 8 

GW_DELAY Groundwater delay (days) v 0–500 181–272 0.533 −0.623 9 

SOL_BD Saturated hydraulic conductivity of first layer r −0.1–1.0 −0.005–0.183 0.551 0.596 10 

SURLAG Surface runoff lag coefficient (day) v 0.0–24 2.68–23.04 0.787 0.272 11 

SOL_AWC Soil water available capacity r −0.1–1.0 −0.061–0.357 0.796 0.257 12 

SOL_K Saturated hydraulic conductivity (mm/h) r −0.1–1.0 −0.011–0.027 0.803 −0.248 13 

SOL_Z Depth from the soil surface to layer bottom  r −0.1–1.0 −0.03–0.021 0.842 −0.198 14 

 

Figure 2. Monthly simulated and observed flows during the calibration period (1995–2004) and val-

idation period (2005–2010).  

Table 4. Daily calibration of SWAT model with field measurement data and SMAP. 

Data  RMSE Bias R p-Value N 

Measurement 
SWAT 0.046 0.012 0.633  0.000 703 

SMAP 0.052 −0.035 0.698  0.000 703 

SWAT SMAP 0.106 −0.096 0.373  0.000 703 
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3.2. Impact of Climate Change on Weather Parameters 

Table 5 gives annual changes in weather parameters in the SWAT model for 11 RCMs 

under RCP8.5 for the two future periods relative to the baseline. Change in mean temper-

ature is more consistent than the precipitation trend. For annual mean temperature, 

CanESM2.CRCM5 (2051–2080) gives the largest increases and GEMatm-MPI.CRCM5 

(2021–2050) gives the lowest increases for the 11 RCMs. The projected mean temperature 

increases for the two periods range from 1.4 °C to 3 °C for the near future and of 2.5 °C to 

4.8 °C for the distant future. These results are consistent with the observations of Tanzeeba 

and Gan [39], who noted a 2 °C increase for the mid-century and 2 °C to 4.5 °C for the late 

century. Likewise, He et al. [40] reported increases in annual mean temperature of 3.9, 3.6, 

and 3.5 °C for Swift Current, Saskatoon, and Melfort, respectively, for the mid-century. 

Sauchyn et al. [7] reported an increase of 1.5 °C to 3.5 °C for the near future and 2.5 °C to 

4.5 °C based on GCM output for the distant future in Prince Albert. Most of the RCMs in 

the study projected increases in annual precipitation. CanESM2.CRCM5 (2080s) gave the 

lowest value and GEMatm-MPI.CRCM5 (2080s) gave the highest increases. The multi-

RCM mean warm-season precipitation increased by 10% in the near future and by 11.2% 

for the distant future when compared with the historical period. Islam and Gan [41] re-

ported increases of 8% and 13.5% for the respective middle century and late century peri-

ods, while Sauchyn et al. [6] found increases of 5.4% and 8.4%, respectively. Dibike et al. 

[9] found an increase of up to 15% in total annual precipitation during the late century. 

Table 5. Annual changes relative to baseline period in weather parameters under RCP8.5. 

RCM 
T Mean ( °C) Precipitation (%) Solar Radiation (%) Humidity (%) 

50 s 80 s 50 s 80 s 50 s 80 s 50 s 80 s 

CanESM2.CanRCM4 2.82 4.54 8.31 5.53 2.67 −0.86 −2.79 −1.54 

CanESM2.CRCM5 3.00 4.83 −2.65 −7.4 0.48 −2.42 −5.1 −4.62 

GEMatm-Can.CRCM5 2.34 3.75 12.77 10.5 1.34 −2.67 −0.42 1.79 

GEMatm-MPI.CRCM5 1.41 2.52 13.06 39.16 −1.21 −1.38 −0.32 0.31 

GFDL-ESM2M.RegCM4 2.33 2.86 3.33 0.44 4.54 −3.38 −3.69 −2.59 

GFDL-ESM2M.WRF 2.11 2.88 13.56 20.41 3.22 −4 −0.99 2.33 

HadGEM2-ES.WRF 1.75 3.6 23.87 11.57 −0.43 0.07 1.79 −1.33 

MPI-ESM-LR.CRCM5 2.37 3.15 2.61 7.51 1.23 1.23 −6.24 −2.06 

MPI-ESM-LR.RegCM4 1.58 3.02 9.01 9.34 0.41 1.05 −3.84 −3.18 

MPI-ESM-LR.WRF 2.01 3.12 16.97 15.24 2.87 −3.94 −3.74 0.91 

MPI-ESM-MR.CRCM5 1.60 2.61 8.68 11.46 −0.7 −1.96 −1.66 −0.02 

The greatest decrease in surface downwelling shortwave (solar) radiation (��/�) is 

found in the MPI-ESM-LR.WRF model in the second period and the highest rise is from 

GFDL-ESM2M.RegCM4 in the first period. Solar radiation increased 1.3% in the first pe-

riod, while it decreased by 1.7% for the second period. The largest change in humidity 

was −6.3% for MPI-ESM-LR.CRCM5 in the first period. Furthermore, humidity decreased 

more in the first period (2.45%) compared with the second period (0.9%) for all RCMs.  

Figure 3 is scatter plots of projected mean precipitation change versus temperature 

between the future and historical periods. The annual changes in precipitation are positive 

for all RCMs except for CanESM2.CRCM5, while changes in mean annual temperature 

are positive for all RCM. Among the models, CanESM2.CRCM5 shows driest conditions 

for both periods whereas HadGEM2-ES.WRF and GEMatm-MPI.CRCM5 have the wettest 

conditions for the near future and distant future, respectively.  
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Figure 3. Scatter plots of annual changes in mean temperature and total precipitation in the region 

for (a) 2050s and (b) 2080s. Purple lines give average of temperature and precipitation for all RCMs.  

Multivariate Bias Correction with N-dimensional probability (MBCn) were tested us-

ing historical climate model data by the climate modeling centers that submitted their 

results to CORDEX. Figure 4 shows box whisker plot of annual mean values for minimum 

temperature, maximum temperature, and precipitation with respect to observation data 

and the 11 RCM models during the baseline period. The figure demonstrates that the dif-

ferences between observations and bias corrected values are not significant for most of the 

11 RCMs.  

 

Figure 4. Box-whisker plots of the precipitation and minimum and maximum temperature derived 

from the observed and RCMs data. 
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Figure 5 illustrates the temporal evolution of annual mean temperature, precipita-

tion, solar radiation, and humidity for historical and projected periods. The ensemble me-

dian precipitation was 307 mm in the historical period, which increased 344 mm in the 

projections. Ensemble median minimum and maximum temperature were 6.7 °C and 20.1 

°C in the historical period, respectively, while 9 °C and 22.6 °C in the projections, that is, 

increased by 2.2 and 2.5 °C in the future. Humidity ensemble results indicate that the his-

torical value was 57.8% and it decreased 56% by the end of the century. The solar radiation 

ensemble mean has no significant changes between historical and projected periods. 

 

Figure 5. Weather parameters time series for the reference period 1976–2005 mean and RCP8.5 pro-

jections from 2005–2080. Solid lines indicate the ensemble medians and the shadings show the in-

terquartile ensemble spread (25th and 75th quantiles). 

3.3. Impact of Climate Change on a Drought Index 

Figure 6 is a box plot of potential evapotranspiration (PET) derived from the 11 RCMs 

using the Penman–Monteith algorithm, for the three periods of historical (1975–2004), 

mid-century (2021–2050), and late century (2051–2080). Most of the climate model simu-

lations have a similar pattern and trend, from historical to future. During the historical 

period, PET mean ranges from 89–121 mm, while it increased 95–130 mm in the middle 

period and 96–138 mm in the late period. The highest PET values in the projected period 

were found in ESM2.CRCM5 for the late century by 138 mm. The multi-RCM average 

warm season PET was projected to increase by 5.8% by mid-century and 14.5% in the late 

century relative to the historical period. DeJong et al. [42] reported an increase of 5.5–12% 

for the mid-century and 15–32% for the late century based on GCM output for Regina, 

reflecting the increases in mean annual temperature. Averaged between all 11 models, 

PET is expected to increase at a higher rate than precipitation for the period 2051–2080, 

while the amount of PET is less than precipitation for the middle period. Therefore, drier 

conditions can be expected at the end of the century in the region. 

Different RCMs were used because we did not expect consistency among the RCMs. 

Therefore, we give results for multi-model mean values, but also show the range of future 

projections from 11 RCMs. Selecting RCMs that have good consistency with the observed 
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weather parameters would be a good approach if the climate model data were not bias-

corrected. The bias correction was done by the climate modeling centers that submit their experi-

mental results to CORDEX. Given that this correction was conducted, we believe that the 

outputs of the model are quite reliable.  

 

Figure 6. Temporally averaged PET in historical and projected changes. 

To assess drought, the Standardized Precipitation Evapotranspiration Index (SPEI) 

was calculated using the RCM data. Figure 7 gives the multi-model SPEI for a six-month 

interval computed using both historical data from 1975 to 2005 and simulated climate data 

according to the 11 RCM models from 2021 to 2080. Periods of extreme drought (SPEI < 

−2.5) is evident in all the time series. The results show more drought in the middle and 

end of century with monthly regional-averaged SPEI approximating less than −1.5. GFDL-

ESM2M.RegCM4 (2028–2029) in the mid-century and CanESM2.CRCM5 (2078–2079) at 

the end of the century show extreme drought with a SPEI less than −2.5. Likewise, a fre-

quency of two extreme drought events (SPEI < −2.0) in the historical period increases to 

four and five events in the middle and end of century, respectively. CanESM2.CRCM5 has 

the most frequent extreme drought event (seven) in the end century among all RCMs. 

Drought of longer duration is more common in projected climate compared with histori-

cal; the longest drought events (with SPEI < −1.0) are from GFDL-ESM2M.WRF. These 

results are consistent with that of Debike et al. [43], who showed an increase in severity of 

summer drought of up to 20% and 40% in the middle and late century, respectively, in 

Saskatchewan. The drought risk (increased drought severity and duration) will increase 

by the end of the century under the effect of rising temperature and evapotranspiration. 
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Figure 7. Temporal variation of SPEI at 6-month scale under historical and projected changes. 

3.4. Impact of Climate Change on Soil Water Content 

Figure 8 illustrates the temporal evolution of warm season SWC mean over the his-

torical and projected periods. The ensemble median SWC was 11.2% in the historical pe-

riod while it decreased to 8.4% and 7.9% in the middle and end centuries, respectively. 
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Figure 8. Soil water content relative to the reference period 1976–2005 mean for RCP8.5 over the 

region. Solid lines show the ensemble medians and the shadings show the interquartile ensemble 

spread (25th and 75th quantiles). 

Figure 9 is box plots of the SWC simulated by the SWAT model for three periods of 

historical, middle, and end of century from the 11 RCMs. SWC has a similar pattern and 

trend among the models from historical to future. During the historical period, SWC me-

dian ranged from 8.5–11.5%, while it decreased 6.5–9.5% in the middle period and 5–8.9% 

in the end period. The highest and lowest SWC values in the projected periods were found 

in GEMatm-MPI.CRCM5 (18.7%) and CanESM2.CRCM5 (2.6%) in the second period. 

 

Figure 9. Box plots of the range of SWC under historical and projected changes. 

Figure 10 shows the spatial pattern of warm season SWC per period for the 11 RCMs. 

The maps show similar distributions from historical to projected for all models. Generally, 

low SWC appears in the southwest to the west of the region, whereas high SWC is ob-

served in the eastern part. Among all RCMs, GEMatm-MPI.CRCM5 in the historical pe-

riod and CanESM2.CRCM5 in the last period shows the wettest and driest conditions 

across the region, respectively. There are obvious changing trends in most parts of the 

region from historical to projected revealed particularly by the map of GEMatm-

Can.CRCM5.  
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Figure 10. Annual spatial SWC in the historical period, and middle and late century. 

Figure 11 gives the spatial change in SWC in terms of the number of pixels in three 

categories: improved soil water content (positive), a loss of soil water content (negative), 

and no significant change. Among all models, only 5% of the region gains SWC, 27% has 

no significant change, and 68% of the region has a loss of SWC.  
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Figure 11. Spatial SWC change between RCM models in (a) near future and (b) distant future. 

Figure 12 shows projected monthly changes in SWC from the historical to future pe-

riods. Results indicate that May loses the most SWC in the first period by 3% (average of 

all RCMs) while this value is unchanged for the second period. In the second period, max-

imum loss of SWC shifts from May to April when it is 3.6% (average of all RCMs). 

CanESM2.RCM4 in April has the highest change value (4.7%) in the middle period and 

CanESM2.CRCM5 in April has the highest change value (5.4%) in the late period. Soil 

moisture derived from snowmelt and precipitation in April to May, plus accumulations 

from the preceding autumn, are critical for water availability to crops during the subse-

quent growing season. Qian et al. [44] and Chipanshi et al. [45] confirm that climate 

change in Canada has a negative effect on soil moisture during the growing season, par-

ticularly in April.  

 

Figure 12. Monthly difference changes between (a) near future with historical and (b) distant future 

with historical. 
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Eleven different projections of SWC strongly suggest an overall future trend of drier 

conditions in the area as indicated when the projected changes in temperature and pre-

cipitation were combined into the SPEI indicator of drought stress. Average precipitation 

in southern Saskatchewan will likely increase; however, an increase in precipitation will 

not necessarily lead to wetter soil and surface conditions given increasing temperature 

and in turn rising evapotranspiration neutralizing the effect of precipitation. Increased 

warm season evapotranspiration will lead to a reduction in SWC levels. These findings 

agree with the observations of Diro and Sushama [46], who reported a decrease of 10% to 

20% for the late-century period using CRCM5 in southern Saskatchewan. Kienzle et al. 

[47] found an increase of 0.5% in the 2020s, 1.4% by the 2050s, and 2.6% by the 2080s. They 

mentioned that earlier snowmelt could result in increased soil moisture earlier in the 

spring, and that soil moisture deficits can be expected in the summer when potential evap-

oration will be higher in the future. Pomeroy et al. [48] reported climate studies for south-

ern Saskatchewan confirming that a doubling of atmospheric CO2 will result in an in-

creased air temperature (up to 8 °C during winter), a decreased snowpack, an earlier 

snowmelt, and a drop in summer soil moisture. A review of the literature on SWC projec-

tions reveals that due to the frequency of drought predicted in the region, the southern 

part of the prairies could experience significant soil moisture deficits during the summer 

months by the end of this century.  

4. Summary and Conclusions 

The ArcSWAT model was employed for the calibration of SWC and the model per-

formed well in simulating mean monthly streamflow the Qu’Appelle River basin with 

BIAS less than 10% and NSE and R higher than 0.8. Increased accuracy of the models was 

achieved by running them with daily weather and soil moisture data, along with satellite 

soil moisture (SMAP) data over a longer time. We employed multivariable calibration via 

evaluation of monthly streamflow along with daily SWC. This improved the reliability of 

parameters for simulating hydrology components in the Qu’Appelle River basin. We 

demonstrated that the calibrated model is applicable for estimating the impact of climate 

change on future SWC in southern Saskatchewan. According to the RCM model means, 

in the near future and distant future, mean temperature will increase 2.1 °C and 3.4 °C, 

and precipitation will increase 10% and 11.25%. We ran the calibrated SWAT model with 

climate forcing from the 11 RCMs. The average of all model runs showed decreased soil 

moisture, despite an increase in annual precipitation, so that the following relative 

changes in soil moisture can be expected in the region: a decrease of 3.6% in 2021–2050 

and 4% in 2051–2070. The primary mechanisms of an increase in drought frequencies are 

increasing evaporation driven by rising temperatures and longer warm seasons, which 

neutralizes the effect of increased rainfall. We found that all 11 SWAT-RCM experiments 

exhibit similar SWC changes in the middle and late centuries, with the milder GEMatm-

MPI RCM producing a slightly more significant increase. In contrast, CanESM2 exhibited 

more significant drought in the same period. The pattern of spatial SWC for the 11 RCMs 

is similar with the northwest and western parts of the region wetter than in the south and 

east. The spatially averaged soil moisture had no obvious change within the historical and 

projected periods, while SWC values had a sharp decrease between the past and the fu-

ture.  

Soil moisture plays a vital role in dryland agriculture, which is reliant on rain and 

snowmelt in cold climates. Low SWC in the warm season is problematic for the produc-

tion of dryland crops; these challenging conditions will intensify in the presence of climate 

change. Increasing extreme temperature and declining SWC can result in severe yield re-

duction with negative impact in the growing stage for local crops such as wheat and can-

ola. This study improves our understanding of climate change effects on soil water con-

tent and can help support sustainable solutions related to food and water security under 

climate change in southern Saskatchewan. 
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